|
__NOTOC__ In combinatorial game theory, a branch of mathematics, a hot game is one in which each player can improve their position by making the next move. By contrast, a cold game is one where each player can only worsen their position by making the next move. Cold games have values in the surreal numbers and so can be ordered by value, while hot games can have other values.〔https://mathenchant.wordpress.com/2015/08/12/the-life-of-games/〕 ==Example== For example, consider a game in which players alternately remove tokens of their own color from a table, the Blue player removing only blue tokens and the Red player removing only red tokens, with the winner being the last player to remove a token. Obviously, victory will go to the player who starts off with more tokens, or to the second player if the number of red and blue tokens are equal. Removing a token of one's own color leaves the position slightly worse for the player who made the move, since that player now has fewer tokens on the table. Thus each token represents a "cold" component of the game. Now consider a special purple token bearing the number "100", which may be removed by either player, who then replaces the purple token with 100 tokens of their own color. (In the notation of Conway, the purple token is the game .) The purple token is a "hot" component, because it is highly advantageous to be the player who removes the purple token. Indeed, if there are any purple tokens on the table, players will prefer to remove them first, leaving the red or blue tokens for last. In general, a player will always prefer to move in a hot game rather than a cold game, because moving in a hot game improves their position, while moving in a cold game injures their position. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hot game」の詳細全文を読む スポンサード リンク
|